
Finite Automata
Part One

Computability Theory

What problems can we solve with a computer?

What problems can we solve with a computer?

What kind of computer?

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm

Computers are Messy

http://www.dharmanitech.com/

Computers are Messy

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Computers are Messy

http://en.wikipedia.org/wiki/File:Eniac.jpg

Computers are Messy

That messiness makes it hard to rigorously
say what we intuitively know to be true:

that, on some fundamental level, different
brands of computers or programming

languages are more or less equivalent in
what they are capable of doing.

C vs C++

vs Java

vs Python

We need a simpler way of

discussing computing machines.

An automaton (plural: automata) is a
mathematical model of a computing device.

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm

Automata are Clean

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

Computers are Messy

http://www.dharmanitech.com/

Automata are Clean

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

Computers are Messy

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Automata are Clean

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

Computers are Messy

http://en.wikipedia.org/wiki/File:Eniac.jpg

Automata are Clean

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

Why Build Models?

Mathematical simplicity.

• It is significantly easier to manipulate our
abstract models of computers than it is to
manipulate actual computers.

Intellectual robustness.

• If we pick our models correctly, we can
make broad, sweeping claims about huge
classes of real computers by arguing that
they're just special cases of our more
general models.

Why Build Models?

The models of computation we will explore in
this class correspond to different conceptions
of what a computer could do.

Finite automata (this week) are an
abstraction of computers with finite resource
constraints.

Provide upper bounds for the computing
machines that we can actually build.

Turing machines (later) are an abstraction of
computers with unbounded resources.

Provide upper bounds for what we could ever
hope to accomplish.

What problems can we solve with a computer?

What problems can we solve with a computer?

What is a “problem?”

Problems with Problems

Before we can talk about what problems we
can solve, we need a formal definition of a
“problem.”

We want a definition that

• corresponds to the problems we want to
solve,

• captures a large class of problems, and

• is mathematically simple to reason about.

No one definition has all three properties.

Formal Language Theory

Strings

An alphabet is a finite, nonempty set of symbols called
characters.

Typically, we use the symbol Σ to refer to an alphabet.

A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

Example: Let Σ = {a, b}. Here are some strings over Σ:

a aabaaabbabaaabaaaabbb abbababba

The empty string has no characters and is denoted ε.

Calling attention to an earlier point: since all strings are
finite sequences of characters from Σ, you cannot have a
string of infinite length.

Languages

A formal language is a set of strings.

We say that L is a language over Σ if it is a
set of strings over Σ.

Example: The language of palindromes over
Σ = {a, b, c} is the set

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

The set of all strings composed from letters in
Σ is denoted Σ*.

Formally, we say that L is a language over Σ if
L ⊆ Σ*.

The Cast of Characters

Languages are sets of strings.

Strings are finite sequences of characters.

Characters are individual symbols.

Alphabets are sets of characters.

Languages

Strings Characters

Alphabets

Strings and Problems

Given a string w, determine whether w ∈ S.

Suppose that L is the language

L = { "a", "b", "c", …, "z" }

This is modeling the problem:

Given a string w, determine whether
w is a single lower-case English letter.

Strings and Problems

Given a string w, determine whether w ∈ S.

Suppose that L is the language

L = { p | p is a legal C++ program }

This is modeling the problem:

Given a string w, determine whether
w is a legal C++ program.

The Model

Fundamental Question: For what languages
L can you design an automaton that takes as
input a string, then determines whether the
string is in L?

The answer depends on the choice of L, the
choice of automaton, and the definition of
“determines.”

In answering this question, we’ll go through a
whirlwind tour of models of computation and
see how this seemingly abstract question has
very real and powerful consequences.

To Summarize

An automaton is an idealized
mathematical computing machine.

A language is a set of strings, a string is a
(finite) sequence of characters, and a
character is an element of an alphabet.

Goal: Figure out in which cases we can
build automata for particular languages.

What problems can we solve with a computer?

Finite Automata

A finite automaton is a simple type of
mathematical machine for determining

whether a string is contained within some

language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

Each circle represents a
state of the automaton.

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

One special state is designated
as the start state.

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 0

The automaton is run on
an input string and

answers “yes” or “no.”

0 1 0 1 1 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

q2q3

0 1 0 1 1 00 1 0 1 1 0

q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

The automaton can be in one
state at a time. It begins in

the start state.

A Simple Finite Automaton

q2q3

0 1 0 1 1 00 1 0 1 1 0

q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

The automaton now begins
processing characters in the
order in which they appear.

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q0 q1

q2q3 q2

Each arrow in this diagram
represents a transition. The

automaton always follows the
transition corresponding to
the current symbol being

read.

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

q2q3

0 1 0 1 1 00 1 0 1 1 0

q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 0

After transitioning, the
automaton considers the
next symbol in the input.

0 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

Now that the automaton has
looked at all this input, it can
decide whether to say “yes”

or “no.”

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

The double circle
indicates that this state
is an accepting state, so
the automaton outputs

“yes.”

0

0

0

0

1 1 1 1

start

Now that the automaton has
looked at all this input, it can
decide whether to say “yes”

or “no.”

A Simple Finite Automaton

0 1 0 1 1 00 1 0 1 1 0

q2q3q3

q0 q1

q2q3 q2

Now that the automaton has
looked at all this input, it can
decide whether to say “yes”

or “no.”

The double circle
indicates that this state
is an accepting state, so
the automaton outputs

“yes.”

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

This state is not an
accepting state (it’s a

rejecting state), so the
automaton says “no.”

A Simple Finite Automaton

1 0 1 0 0 0

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

This state is not an
accepting state (it’s a

rejecting state), so the
automaton says “no.”

A Simple Finite Automaton

q0 q1

q2q3 q2

0

0

0

0

1 1 1 1

start

A Simple Finite Automaton

q0 q1

q2q3 q2

Try it yourself!
Does this automaton

accept or reject this string?

1 1 0 1 1 1 0 0

0

0

0

0

1 1 1 1

start

The Story So Far

A finite automaton is a collection of states joined
by transitions.

Some state is designated as the start state.

Some number of states are designated as accepting
states.

The automaton processes a string by beginning in the
start state and following the indicated transitions.

If the automaton ends in an accepting state, it
accepts the input.

Otherwise, the automaton rejects the input.

Time-Out For Announcements!

Midterm

• The midterm will become available at
9:30 AM PDT tomorrow (Thursday). All
the details you need to know are on a
pinned Campuswire post.

• There are no office hours tomorrow.
They’ve all been moved to not happen
during the midterm.

• You’ve got this!

Back to CS103!

Just Passing Through

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2
q1 1 1 0 1

q0

q1

q4
q3

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q1

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q1

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3q3

q0

q1

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

q1

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

q1

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

q1

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

0 0

0

0

0

1

1 1

1

1

start

Just Passing Through

q0

q2

q4

q1

q3

1 1 0 1

q4
q3

q0

0 0

0

0

0

1

1 1

1

1

start

A finite automaton does not accept as
soon as it enters an accepting state.

A finite automaton accepts if it ends in
an accepting state.

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

No matter where we start in the
automaton, after seeing two 1's,
we end up in accepting state q3.

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

No matter where we start in the
automaton, after seeing two 0's,
we end up in accepting state q4.

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

What Does This Accept?

q0

q2

q4

q1

q3

This automaton accepts a
string in {0, 1}* iff the
string ends in 00 or 11.

0 0

0

0

0

1

1 1

1

1

start

The language of an automaton is the

set of strings that it accepts.

If D is an automaton that processes
characters from the alphabet Σ, then ℒ(D)

is formally defined as

ℒ(D) = { w ∈ Σ* | D accepts w }

A Small Problem

q0

q1
q2

0 0

1

start

A Small Problem

q0

q1
q2

0 1 1 00 0

1

start

A Small Problem

q0

q1
q2

0 1 1 00 0

1

start

A Small Problem

q0

q1
q2

0 1 1 00 0

1

start

A Small Problem

q0

q1
q2

0 1 1 00 0

1

start

A Small Problem

q0

q1
q2

0 1 1 00 0

1

start

A Small Problem

q0

q1
q2

0 1 1 00 0

1

start

A Small Problem

q0

q1
q2

0 1 1 00 0

1

start

A Small Problem

q0

q1
q2

0 1 1 00 0

1

start

Another Small Problem

q0

q2

q1

start

0, 1

0, 1

0, 1

0

Another Small Problem

q0

q2

0 0 0

q1

0, 1

0, 1

0, 1

0

Another Small Problem

q0

q2

0 0 0

q1

0, 1

0, 1

0, 1

0

Another Small Problem

q0

q2

0 0 0

q1

0, 1

0, 1

0, 1

0

Another Small Problem

q0

q2

0 0 0

q1

0, 1

0, 1

0, 1

0

Another Small Problem

q0

q2

0 0 0

q1

0, 1

0, 1

0, 1

0

Another Small Problem

q0

q2

0 0 0

q1

0, 1

0, 1

0, 1

0

Another Small Problem

q0

q2

0 0 0

q1

0, 1

0, 1

0, 1

0

The Need for Formalism

In order to reason about the limits of what
finite automata can and cannot do, we need
to formally specify their behavior in all
cases.

All of the following need to be defined or
disallowed:

What happens if there is no transition out
of a state on some input?

What happens if there are multiple
transitions out of a state on some input?

DFAs

A DFA is a

• Deterministic

• Finite

• Automaton

DFAs are the simplest type of automaton
that we will see in this course.

DFAs

• A DFA is defined relative to some
alphabet Σ.

• For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.

• This is the “deterministic” part of DFA.

• There is a unique start state.

• There are zero or more accepting states.

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0 q1

q2q3 q2

0

0

0

1 1 1 1

start
0

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0

q2

q4

q1

q3

0 0

0

0

0

1

1 1

1

1

start

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0

q1
q2

0 0

1

start

Is this a DFA over {0, 1}?

q0

q1
q2

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0 q1

q3 q2

start 0, 1

0, 1

0, 1

0, 1

Is this a DFA over {0, 1}?

Is this a DFA over {0, 1}?

q0

q2

q1

0, 1

0, 1

0, 1

0

start

Is this a DFA over {0, 1}?

q0

q2

q1

Is this a DFA?

Is this a DFA?

Is this a DFA?

Drinking Family of Aardvarks

Designing DFAs

At each point in its execution, the DFA can
only remember what state it is in.

DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.

Each state acts as a “memento” of what
you're supposed to do next.

Only finitely many different states means
only finitely many different things the
machine can remember.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0

a

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0 q1

a

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0 q1

aa

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0 q1 q2

aa

bb

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0 q1 q2

aaa

bb

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0 q1 q2

b

aaa

bb

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0 q1 q2

b

aaa

bb

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
to two modulo three }

q0 q1 q2

Each state remembers the

remainder of the number of bs

seen so far modulo three.

b

aaa

bb

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1

a

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1

a

b

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

a

b

a

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

a

b

a

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

a

b
a, b

a

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

a

b
a, b

a

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

a

b
Σ

a

b

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0 q1 q2

a

b
Σ

a

b

start

More Elaborate DFAs

L = { w ∈ {a, *, /}* | w represents a C-style comment }

Let’s have the a symbol be a placeholder for “some character that isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help you check your work:

Accepted:

/*a*/
/**/

/***/
/*aaa*aaa*/

/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/

//aaaa

More Elaborate DFAs

L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1 q2 q3 q4q0

q5

/

*

a

/, a

a, *

/ *

Σ

start

*
a, /

Σ

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that ℒ(D) = L.

If L is a language and ℒ(D) = L, we say that
D recognizes the language L.

Revisiting a Problem

q0 q1 q2q2

q3

start

0, 1

0, 1

11

0, 1

0

Revisiting a Problem

q0 q1 q2q2

start 11

0, 1

NFAs

An NFA is a

• Nondeterministic

• Finite

• Automaton

Structurally similar to a DFA, but
represents a fundamental shift in how we'll
think about computation.

(Non)determinism

A model of computation is deterministic if at every
point in the computation, there is exactly one choice
that can make.

The machine accepts if that series of choices leads to
an accepting state.

A model of computation is nondeterministic if the
computing machine may have multiple decisions that it
can make at one point.

The machine accepts if any series of choices leads to
an accepting state.

(This sort of nondeterminism is technically called
existential nondeterminism, the most philosophical-
sounding term we’ll introduce all quarter.)

A Simple NFA

q0 q1 q2q2

q3

start

0, 1

0, 1

11

0, 1

0

A Simple NFA

q0 has two transitions defined
on 1!

q0 q1 q2q2

q3

start

0, 1

0, 1

11

0, 1

0

A Simple NFA

0 1 0 1 1

q0 q1 q2q2

q3

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2q2

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

q3

0 1 0 1 1

start

0, 1

11

0, 1

0

0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

q3

start

0, 1

11

0, 1

0

0, 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

If a NFA needs to make a transition when no
transition exists, the automaton dies and

that particular path does not accept.

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q1q0q0 q1 q2q2

A More Complex NFA

q2q2

0 1 0 1 1

1 1

0, 1

start

q1q0q0 q1 q2q2

A More Complex NFA

q2q2

0 1 0 1 1

1 1

0, 1

start

q1q0q0 q2q2

A More Complex NFA

q2q2

Oh no! There's no
transition defined!

0 1 0 1 1

1 1

0, 1

start

q1q1q0q0 q2q2

A More Complex NFA

q2q2

0 1 0 1 1

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q0q0 q1 q2q2

A More Complex NFA

q1 q2q2

0 1 0 1 1

1 1

0, 1

start

q1q0q0 q1 q2q2

A More Complex NFA

q2q2

0 1 0 1 1

1 1

0, 1

start

q1q0q0 q1 q2q2

A More Complex NFA

q2q2

0 1 0 1 1

1 1

0, 1

start

q2q2q1q1q0q0 q2q2

A More Complex NFA

0 1 0 1 1

1 1

0, 1

start

q2q2q1q1q0q0 q2q2

A More Complex NFA

0 1 0 1 1

1 1

0, 1

start

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

1 1

0, 1

start

Next Time

DFAs vs NFAs

How do these two models of computation
relate?

Regular Languages

A first classification of “problems”.

