Finite Automata

Part One

Computability Theory

What problems can we solve with a computer?

What problems can we solve with a computer?

What kind of computer?

Computers are Messy

B4-Bit Interunit Transfer Bus

32-Bit Data Bus

o I
; 7

Y 32-Bit Data Bus 32
il

Linear Address ";33

b

).

Core

Clocks

. Clack
Control

CLK

2
I
4\ } a2 Bus Interface & 42431
Peb, P BE 0#_EE3#
Barrel Shifter | gazes Segmuer:gatlnn _ 2 Cache Unit #ﬁ %E:]dgr?
I Paging 3 =2
Bus - Unit 20 Wirite Butiers
. . Descriptor Phrysical L
Renister File P ; . ¥ 7 4 %32
32 HEQIETEFE Ardress g Hb':."tE-‘ {32 15
: Cache Do
Litn it and Tranzlation | ;| DataBus
ALU Atribute PLA Lookaside o] Transceivers ”
Eufier 32
AD SRR DICE MAO# PCD
125 Bus Cortral | paoyT RDY# LOCK#E PLOCKR
BOFF # A20M# EREG HOLD
. HLD&RESET SRESET INTR
Dispiacemerit Bus - Prefetchar || Request M SMIE SMIACTR STP CLK#E
| . - |~ Sequencer a
Microdnstniction
32 Byte Code Burgt Buz | BRDY# BLASTR#
Code CILELE Cortral ”
cartral and [y SE— Stream
ool and - u——— |ngtruction 2% 16 Bytes Cache
Frotection Test S .a— Coe | KEMN# FLUSH# 2HOLD EADSH
Unit (— 24 ﬁ
Decoded
Cortral ROM | Instruction Bourdary Scan
Path Control h':ﬂg
TDO

http://www.intel.com/design/intarch/prodbref/272713.htm

omputers are Messy

ISP Connector

3
IC1 Bpennan]|
5 L9 RESET (ADC7)PA7 ——gg- e) ey
8 o (ADCE)PAG (—2% C z=E=f o
2 (ADCS)PA5 — = 0 o
XTAL2 (ADC4)PAS [—= = >
- — . (ADC3)PAZ 3L GND '
ao P 24 XTAL1 (ADC2)PA2 [= o
s s SF :
31 8 5
o AGND (SCK)PB7 -
o c10 [o (MISO)PB6 2—' :
> "5 7 vee (MOShPBS |
A GND (SS)PBs |2 SNSRE
(AIN1/OCO)PB3 4 Cé S
0.1 AINUINT2)PB2 |2 == | SD Card Connector
2 0.1uf
(T1)PB1 r—«
i 9 sl 1 wilf o
GND GOXCOPED &ND GND
(TOSC2)PC7 —gg
Vee-320 oscuets |2 N
o (TDO)PC4 —gg | [— -
(&) (TMS)PC3 =2 _[CT 11 Fas S /2
> (TCK)PC2 |24 Vs |2
3.3V 23 iuf 4 -
3 (SDAPC1 |22 C1- g
- (scLpco |22 v)
1 C7 |§2 4 Co+ = 8
21 -
(oC2)pD7 |-2L a5
it (cPpDs |20 LU GND
(0C1AJPDs |12 ; i
- (0c1B)PDs —2 TIN - TiouT |
GND (NT1)PD3 (L LED 191 N meout
(NTopD2 —2—P 21 rouT RIN |
(XD)PD1 |2 - 21 pour RaN &
(RXD)PDO VIR
MEGA32-P N I
m%% GND AAAAA <
Y] o
by CC Dharmani by N

()
P
o

. RS232 DB9(F)Connector
www.dharmanitech.com

microSD/SD Card interface with ATmega32 ver_23

http://www.dharmanitech.com/

Computers are Messy

4,8, 16 or 30 SMs PR
(32, 64, 12%r 240 SPs) Ll Cache

Multithreading

Double-precision SP

DP: double precision processor SFU: special function unit SM: streaming multi-processor

SP: streaming processor
Fig 2 Covering Everything from PCs to Supercomputers NVIDIA's CUDA architecture boasts high scalability. The quantity of processor

units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has
double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

omputers are Messy

X

. vk N

wh

il

http://en.wikipedia.org/wiki/File:Eniac.jpg

Computers are Messy

That messiness makes it hard to rigorously
say what we intuitively know to be true:
that, on some fundamental level, different
brands of computers or programming
languages are more or less equivalent in
what they are capable of doing.

g C vs C++
855

vsS Java
vs Python

We need a simpler way of
discussing computing machines.

An automaton (plural: automata) is a
mathematical model of a computing device.

Computers are Messy

B4-Bit Interunit Transfer Bus

32-Bit Data Bus

o I
; 7

Y 32-Bit Data Bus 32
il

Linear Address ";33

b

).

Core

Clocks

. Clack
Control

CLK

2
I
4\ } a2 Bus Interface & 42431
Peb, P BE 0#_EE3#
Barrel Shifter | gazes Segmuer:gatlnn _ 2 Cache Unit #ﬁ %E:]dgr?
I Paging 3 =2
Bus - Unit 20 Wirite Butiers
. . Descriptor Phrysical L
Renister File P ; . ¥ 7 4 %32
32 HEQIETEFE Ardress g Hb':."tE-‘ {32 15
: Cache Do
Litn it and Tranzlation | ;| DataBus
ALU Atribute PLA Lookaside o] Transceivers ”
Eufier 32
AD SRR DICE MAO# PCD
125 Bus Cortral | paoyT RDY# LOCK#E PLOCKR
BOFF # A20M# EREG HOLD
. HLD&RESET SRESET INTR
Dispiacemerit Bus - Prefetchar || Request M SMIE SMIACTR STP CLK#E
| . - |~ Sequencer a
Microdnstniction
32 Byte Code Burgt Buz | BRDY# BLASTR#
Code CILELE Cortral ”
cartral and [y SE— Stream
ool and - u——— |ngtruction 2% 16 Bytes Cache
Frotection Test S .a— Coe | KEMN# FLUSH# 2HOLD EADSH
Unit (— 24 ﬁ
Decoded
Cortral ROM | Instruction Bourdary Scan
Path Control h':ﬂg
TDO

http://www.intel.com/design/intarch/prodbref/272713.htm

Automata are Clean

Star 0

_

1 1 1 1

0

omputers are Messy

ISP Connector

3
IC1 Bpennan]|
5 L9 RESET (ADC7)PA7 ——gg- e) ey
8 o (ADCE)PAG (—2% C z=E=f o
2 (ADCS)PA5 — = 0 o
XTAL2 (ADC4)PAS [—= = >
- — . (ADC3)PAZ 3L GND '
ao P 24 XTAL1 (ADC2)PA2 [= o
s s SF :
31 8 5
o AGND (SCK)PB7 -
o c10 [o (MISO)PB6 2—' :
> "5 7 vee (MOShPBS |
A GND (SS)PBs |2 SNSRE
(AIN1/OCO)PB3 4 Cé S
0.1 AINUINT2)PB2 |2 == | SD Card Connector
2 0.1uf
(T1)PB1 r—«
i 9 sl 1 wilf o
GND GOXCOPED &ND GND
(TOSC2)PC7 —gg
Vee-320 oscuets |2 N
o (TDO)PC4 —gg | [— -
(&) (TMS)PC3 =2 _[CT 11 Fas S /2
> (TCK)PC2 |24 Vs |2
3.3V 23 iuf 4 -
3 (SDAPC1 |22 C1- g
- (scLpco |22 v)
1 C7 |§2 4 Co+ = 8
21 -
(oC2)pD7 |-2L a5
it (cPpDs |20 LU GND
(0C1AJPDs |12 ; i
- (0c1B)PDs —2 TIN - TiouT |
GND (NT1)PD3 (L LED 191 N meout
(NTopD2 —2—P 21 rouT RIN |
(XD)PD1 |2 - 21 pour RaN &
(RXD)PDO VIR
MEGA32-P N I
m%% GND AAAAA <
Y] o
by CC Dharmani by N

()
P
o

. RS232 DB9(F)Connector
www.dharmanitech.com

microSD/SD Card interface with ATmega32 ver_23

http://www.dharmanitech.com/

Automata are Clean

Star 0

_

1 1 1 1

0

Computers are Messy

4,8, 16 or 30 SMs PR
(32, 64, 12%r 240 SPs) Ll Cache

Multithreading

Double-precision SP

DP: double precision processor SFU: special function unit SM: streaming multi-processor

SP: streaming processor
Fig 2 Covering Everything from PCs to Supercomputers NVIDIA's CUDA architecture boasts high scalability. The quantity of processor

units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has
double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Automata are Clean

Star 0

_

1 1 1 1

0

omputers are Messy

X

. vk N

wh

il

http://en.wikipedia.org/wiki/File:Eniac.jpg

Automata are Clean

Star 0

_

1 1 1 1

0

Why Build Models?

Mathematical simplicity.

* It is significantly easier to manipulate our
abstract models of computers than it is to
manipulate actual computers.

Intellectual robustness.

* If we pick our models correctly, we can
make broad, sweeping claims about huge
classes of real computers by arguing that
they're just special cases of our more
general models.

Why Build Models?

The models of computation we will explore in
this class correspond to different conceptions
of what a computer could do.

Finite automata (this week) are an
abstraction of computers with finite resource
constraints.

Provide up}l:%er bounds for the computing
machines that we can actually build.

Turing machines (later) are an abstraction of
computers with unbounded resources.

Provide upper bounds for what we could ever
hope to accomplish.

What problems can we solve with a computer?

What problems can we solve with a computer?

|

What is a “problem?”

Problems with Problems

Before we can talk about what problems we
can solve, we need a formal definition of a
“problem.”

We want a definition that

* corresponds to the problems we want to
solve,

* captures a large class of problems, and
* is mathematically simple to reason about.

No one definition has all three properties.

Formal Language Theory

Strings

An alphabet is a finite, nonempty set of symbols called
characters.

Typically, we use the symbol X to refer to an alphabet.

A string over an alphabet 2 is a finite sequence of
characters drawn from 2.

Example: Let 2 = {a, b}. Here are some strings over X:
a aabaaabbabaaabaaaabbb abbababba
The empty string has no characters and is denoted .

Calling attention to an earlier point: since all strings are
finite sequences of characters from %, you cannot have a
string of infinite length.

Languages

A formal language is a set of strings.

We say that L is a language over 2 if it is a
set of strings over .

Example: The language of palindromes over
> = {a, b, c} is the set

{€, a, b, ¢, aa, bb, cc, aaa, aba, aca, bab, ... }

The set of all strings composed from letters in
2 is denoted X*.

Formally, we say that L is a language over X if
L C ¥,

The Cast of Characters

Languages are sets of strings.
Strings are finite sequences of characters.
Characters are individual symbols.
Alphabets are sets of characters.

Languages Alphabets

Strings > Characters

Strings and Problems

Given a string w, determine whether w € S.
Suppose that L is the language

L=4{"a","b", "c", ..., "2" }
This is modeling the problem:

Given a string w, determine whether
w is a single lower-case English letter.

Strings and Problems

Given a string w, determine whether w € S.
Suppose that L is the language

L={p]|pisalegal C++ program }
This is modeling the problem:

Given a string w, determine whether
wis a legal C++ program.

The Model

Fundamental Question: For what languages
L can you design an automaton that takes as

input a string, then determines whether the
string is in L?

The answer depends on the choice of L, the
choice of automaton, and the definition of
“determines.”

In answering this question, we’ll go through a
whirlwind tour of models of computation and
see how this seemingl?/ abstract question has
very real and powertul consequences.

To Summarize

An automaton is an idealized
mathematical computing machine.

A language is a set of strings, a string is a
(finite) sequence of characters, and a
character is an element of an alphabet.

Goal: Figure out in which cases we can
build automata for particular languages.

What problems can we solve with a computer?

Finite Automata

A finite automaton is a simple type of
mathematical machine for determining

whether a string is contained within some

language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton

0

_

1 1 1 1

0

A Simple Finite Automaton
start ' 0
O /

1 1 1
OO
0
| Each circle represents a I
state of the automaton.

A Simple Finite Automaton

0

_

1 1 1 1

0

A Simple Finite Automaton

start 0 m
NG

O=—0

One special state is designated
as the start state.

A Simple Finite Automaton

0

_

1 1 1 1

0

A Simple Finite Automaton

0

_

1 1

O=—0

1

010110

A Simple Finite Automaton

The automaton is run on
an input string and
answers “yes” or “no.”

- (;

010110

A Simple Finite Automaton

0

_

1 1

O=—0

1

010110

A Simple Finite Automaton

start ' 0 m
0 L
1

1 1

1

O=—0

010110

A Simple Finite Automaton

start m
0 \q;

The automaton can be in one
state at a time. It begins in]- 1

g

the start state.

010110

A Simple Finite Automaton

start ' 0 m
0 L
1

1 1

1

O=—0

010110

A Simple Finite Automaton

start m
0 \q;

The automaton now begins
processing characters in the 1 1

order in which they appear.
0

%IMI

A Simple Finite Automaton

start ' 0 m
0 L
1

1 1

1

O=—0

%ﬁﬂl

A Simple Finite Automaton

start ﬁ
0 L

A Simple Finite Automaton

start ﬁ
0 \q:,

1 1 1 1

Each arrow in this diagram
represents a transition. The

automaton always follows the
d transition corresponding to

the current symbol being

N
O read.

A Simple Finite Automaton

start ﬁ
0 L

1 1

0

%ﬁﬂl

p—

1

A Simple Finite Automaton

A Simple Finite Automaton

start

A Simple Finite Automaton

start

A Simple Finite Automaton

After transitioning, the
1automaton considers the
next symbol in the input.

A Simple Finite Automaton

start

A Simple Finite Automaton

A Simple Finite Automaton

0
start f'\
\
Lo
1 1 1 1

- 0
U

oo

A Simple Finite Automaton

start 0

—
1 1 1 1

@), @

oo

A Simple Finite Automaton

start 0

—
1 1 1 1

@), @

El%ml

A Simple Finite Automaton

start 0

—

A Simple Finite Automaton

start f\\

&/

1 1

0

1

®

—

El%ml

1

A Simple Finite Automaton

start 0

—
1 1 1

(O,

C
El%lﬂ

A Simple Finite Automaton

start 0

—
1 1 1

(O,

C
m%m

A Simple Finite Automaton

0
start \
4o 0 ,/Q-D
o/ A\

—
1 1 1 1

:

N
U

A Simple Finite Automaton

0

—

start

A Simple Finite Automaton

0
()
=
1 1|0

start

1

OE=0

CRNTENND

A Simple Finite Automaton

0
()
=
1 1|0

start

1

OE=0

CRNTENND

A Simple Finite Automaton

start

1

N
U

IZ |

CRNTENND

A Simple Finite Automaton

A Simple Finite Automaton

start 0

—
1 1 1

(O,

C
m:n:%:

A Simple Finite Automaton

start 0

—
1 1 1

(O,

C
mn:%

A Simple Finite Automaton

start 0

—

A Simple Finite Automaton

start 0

—
1 1 1 1

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

0
start \
Oa=0

Now that the automaton has R/
looked at all this input, it can
decide whether to say “yes” 1 1 1

A Simple Finite Automaton

start
f%\ \
NG

Now that the automaton has

looked at all this input, it can

decide whether to say “yes”
or “no.”

(a)

—

The double circle
indicates that this state

is an accepting state, so

the automaton outputs

o ”

yes.

A Simple Finite Automaton

Now that the
looked at all
decide whet

or

010110

The double circle
indicates that this state
is an accepting state, so
the automaton outputs

“yes.”

A Simple Finite Automaton

0

_

1 1 1 1

0

A Simple Finite Automaton

0

_

1 1

O=—0

1

1 01000

A Simple Finite Automaton

start ' 0 m
0 L
1

1 1

1

O=—0

1 01000

A Simple Finite Automaton

start ' 0 m
0 L
1

1 1

1

O=—0

.

A Simple Finite Automaton

start : @
1 1
(@)

0
01000

p—

1
1T

A Simple Finite Automaton

A Simple Finite Automaton

0

—

A Simple Finite Automaton

0

—

A Simple Finite Automaton

0

—

A Simple Finite Automaton

0

—

A Simple Finite Automaton

0

—

1 1 1 1

A Simple Finite Automaton

0

—

1 1 1 1

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

start ‘ 0 m
0 L

A Simple Finite Automaton

:' a, >
0 —

1 1

start

1

@ -

1 010

0
1T

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

start ‘ 0 m
0 L

1 1 1 1

D=0,

.

A Simple Finite Automaton

start ‘ 0 m
0 L

1 1 1 1

D=0,

1 01000

A Simple Finite Automaton

start ‘ 0 m
1
0\

This state is not an
accepting state (it’s a
rejecting state), so the 1 1 1
automaton says “no.”

1 01000

A Simple Finite Automaton

start ‘ 0

This state is not an
accepting state (it’s a
rejecting state), so the
automaton says “no.”

A Simple Finite Automaton

0

_

1 1 1 1

0

A Simple Finite Automaton

0

—

1 1 1 1

Try it yourself!
Does this automaton

accept or reject this string? f
0
ds
0

11011100

The Story So Far

A finite automaton is a collection of states joined
by transitions.

Some state is designated as the start state.

Some number of states are designated as accepting
states.

The automaton processes a string by beginning in the
start state and following the indicated transitions.

If the automaton ends in an accepting state, it
accepts the input.

Otherwise, the automaton rejects the input.

Time-Out For Announcements!

Midterm

* The midterm will become available at
9:30 AM PDT tomorrow (Thursday). All
the details you need to know are on a
pinned Campuswire post.

* There are no office hours tomorrow.
They’ve all been moved to not happen
during the midterm.

°* You've got this!

Back to CS103!

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

Just Passing Through

A finite automaton does not accept as
soon as it enters an accepting state.

A finite automaton accepts if it ends in
an accepting state.

What Does This Accept?

What Does This Accept?

What Does This Accept?

start

What Does This Accept?

What Does This Accept?

start

What Does This Accept?

start

What Does This Accept?

What Does This Accept?

No matter where we start in the
automaton, after seeing two 1's,
we end up in accepting state q..

What Does This Accept?

What Does This Accept?

start

What Does This Accept?

What Does This Accept?

start

What Does This Accept?

start

What Does This Accept?

What Does This Accept?

No matter where we start in the
automaton, after seeing two O's,
we end up in accepting state q,,.

What Does This Accept?

What Does This Accept?

This automaton accepts a
string in {0, 1}¥*iff the
string ends in 00 or 11.

The language of an automaton is the
set of strings that it accepts.

If D is an automaton that processes
characters from the alphabet %2, then D)
is formally defined as

AD) ={we X*| D accepts w }

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

Another Small Problem

0,1

Startfq\ 0, 1 fq?
0 k1

0

Another Small Problem

0,1

oo}

0 0 0

Another Small Problem

0,1

@ ®

0 0 0

Another Small Problem

0,1

@ ®

0

000

Another Small Problem

0,1

o)

0

000

Another Small Problem

0,1

o)

0

oo

Another Small Problem

Another Small Problem

The Need for Formalism

In order to reason about the limits of what
finite automata can and cannot do, we need
to formally specity their behavior in all
cases.

All of the following need to be defined or
disallowed:

What happens if there is no transition out
of a state on some input?

What happens if there are multiple
transitions out of a state on some input?

DFAs

A DFA is a

* Deterministic
* Finite

* Automaton

DFAs are the simplest type of automaton
that we will see in this course.

DFAs

A DFA is defined relative to some
alphabet 2.

For each state in the DFA, there must be
exactly one transition defined for each
symbol in 2.

* This is the “deterministic” part of DFA.
There is a unique start state.
There are zero or more accepting states.

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

0
start @ : @

_

1 1 1 1

0

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

start @O, 1 \q
0 1
0,1 0,1

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA over {0, 1}7?

Is this a DFA?

Is this a DFA?

Is this a DFA?

Drinking Family of Aardvarks

Designing DFAs

At each point in its execution, the DFA can
only remember what state it is in.

DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.

Each state acts as a “memento” of what
you're supposed to do next.

Only finitely many different states means
only finitely many different things the
machine can remember.

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

start
dy

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

d

start
dy

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

start/ \
e

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

start
(@)=

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Recognizing Languages with DFAS

L ={we€ {a, b}*| the number of b's in w is congruent
to two modulo three }

Each state remembers the

remainder of the number of bs
seen so far modulo three.

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

start
dy

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

b

start
dy

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

b
start a
(o))

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

b
start [§ a f\ a
D= UV

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

b

a,b
start [a § 2 fq\ a
U @

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

b

a,b
start [a § 2 fq\ a
U @

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

b

Recognizing Languages with DFAS

L ={we{a b}*| wcontains aa as a substring }

b

More Elaborate DFASs

L={we({a * /}*| wrepresents a C-style comment }

Let’s have the & symbol be a placeholder for “some character that isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help you check your work:

Accepted: Rejected:
/*a*/ /**
[**/ [**/a[*aa*/
Vakdd aaa/**/aa
[*aaa*aaa*/ [*/
[*ala*/ [**a/

//aaaa

More Elaborate DFASs

L={we({a * /}*| wrepresents a C-style comment }

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that AD) = L.

If L is a language and AD) = L, we say that
D recognizes the language L.

Revisiting a Problem

Revisiting a Problem

start@ 1 @ 1

0,1

N FASs

An NFA is a

* Nondeterministic
* Finite

* Automaton

Structurally similar to a DFA, but
represents a fundamental shift in how we'll
think about computation.

(Non)determinism

A model of computation is deterministic if at every
point in the computation, there is exactly one choice
that can make.

The machine accepts if that series of choices leads to
an accepting state.

A model of computation is nondeterministic if the
computing machine may have multiple decisions that it
can make at one point.

The machine accepts if any series of choices leads to
an accepting state.

(This sort of nondeterminism is technically called_
existential nondeterminism, the most philosophical-
sounding term we’ll introduce all quarter.)

A Simple NFA

A Simple NFA

d, has two transitions defined
on 1!

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

OFAPPROVAL

A More Complex NFA

start f—\
ORORn0

A More Complex NFA

start@()’ll @ 1
|

If a NFA needs to make a transition when no
transition exists, the automaton dies and
that particular path does not accept.

A More Complex NFA

start f—\
ORORn0

A More Complex NFA

start f-\
ORaORn0

A More Complex NFA

start f-\
ORaORn0

A More Complex NFA

start f-\
ORaORn0

A More Complex NFA

start f—\
ORaORn0

A More Complex NFA

start f—\
ORaORn0

A More Complex NFA

start m m

), O

Oh no! There's no
transition defined!

0(1(0(1(1

A More Complex NFA

start f—\
ORORn0

A More Complex NFA

start f—\
ORaORn0

A More Complex NFA

start f-\
ORaORn0

A More Complex NFA

start f-\
ORaORn0

A More Complex NFA

start f-\
ORaORn0

A More Complex NFA

start f-\
ORaORn0

A More Complex NFA

start f—\
ORaORn0

A More Complex NFA

start f—\
ORaORn0

A More Complex NFA

start f—\
ORaORn0

A More Complex NFA

start f—\
ORaORn0

A More Complex NFA

startfq-\ 1 fq-\ 1

Next Time

DFAs vs NFAs

How do these two models of computation
relate?

Regular Lanqguages
A first classification of “problems”.

